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Abstract—Modern cyber-physical production systems require
a software-intensive integration at the shopfloor, such as ma-
chines, transport systems, worker assistance systems, and robots.
Alongside the interaction of participants at the physical level
exists another level of interactions at the software level: the
distributed software architecture of the cyber-physical production
system (CPPS). Contemporary CPPSs require frequent changes
in communication paths and the signals communicated (i.e.,
rewiring) to flexibly adapt to changing production needs and
environmental conditions. The integration of shopfloor partici-
pants and their wiring, hence, becomes a critical aspect of a
dynamically adaptable production system. Here, incomplete and
incorrect wiring is a major source of errors. To this end, this
paper presents a light weight approach for wiring shopfloor
participants that utilizes decentralized wiring information to
extract/recover the distributed software architecture of the CPPS.
We demonstrate the feasibility of our approach on a lab-scale
production cell model.

Index Terms—software architecture; reconfiguration; cyber-
physical production systems; adaptability; OPC UA

I. INTRODUCTION

Modern production systems require the integration of
shopfloor (factory) machines, transport systems, worker as-
sistance systems, and robots. These production participants
interact at the physical level and at the software level. Indeed,
today’s participants to production systems are distributed,
interconnected, software-intensive systems: i.e., cyber-physical
production systems (CPPS). Tomorrow’s shopfloors need to be
able to produce highly customized products (down to lot size
one) while keeping costs similar to mass production. Doing
so requires the dynamically reconfigurability of shopfloor
participants.

Production engineers require considerable time setting up
and reconfiguring a shopfloor, a procedure that often involves
engineers from different disciplines and/or engineers responsi-
ble for different machines. Machine vendors often provide pro-
prietary interfaces how their product’s control software needs
to be connected (i.e. the software components wired) to other
shopfloor participants. Hence, an engineer (re)configuring a
machine—respectively tool support—typically needs to have
a good understanding of the internal machine configuration.
However, because of this, quite often they only have a par-
tial understanding of the overall shopfloor. Interoperability
becomes a critical aspect as incomplete and incorrect con-
figuration is a major source of errors and subsequently results
in costly stand still times or even damage to the production
cell.
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The concept of virtual commissioning (configuration) aims
to mitigate the threat of damage and lengthy down times [1]
but doesn’t address the complexity of the control software
(re)wiring process. State of the art provides little support.
Contemporary approaches and tools such as provided by the
ArrowHead framework [2] presume a centralized approach
for discovery, orchestrations, and description of shopfloor
participants.

We argue in this paper that the (re)wiring of the control
software of a CPPS requires a decentralized, lightweight
approach to reflect the multi-vendor, multi-domain view on
the shopfloor participants. An approach is needed that supports
interoperability for systems-of-systems [3] whilst making use
of existing standards for machine-to-machine communication.

Based on “traditional” software architecture description

language-centric concepts (see e.g., [4]), we present in this
paper a lightweight approach based on OPC Unified Architec-
ture (OPC UA) [5], in Europe a de-facto protocol specification
for industrial communication. While OPC UA specifies how
information is modeled, accessed, and transmitted over the
network, it provides no mechanism to specify interface-like
information nor mechanisms that describe how components of
different shopfloor participants may be wired up across each
other.
Our approach allows easy online reconfiguration without inter-
rupting the execution of control code. We further explain how
to utilize decentralized wiring information to extract/recover
the CPPS’s distributed software architecture. Integration of this
approach in a lab-scale production cell model demonstrates
feasibility and benefits.

The remainder of the paper is structured as follows. Section
II provides a motivating scenario that further outlines the chal-
lenges this paper addresses. Section 1II presents our approach
for CPPS software architecture wiring, with the key wiring
elements described in Section IV and the subsequent wiring
procedure layed out in Section V. A use case demonstrates
the feasibility of our approach in Section VI. Section VII
then discusses related work, before we conclude this paper
and provide an outlook on future work in Section VIII.

II. MOTIVATING SCENARIO

A simplified production cell in our motivating scenario
(inspired by one of our industry partner’s production cells)
is composed of different participants with the following basic
capabilities: an Injection Molding Machine (IMM) with the
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capability of molding, two 3-axis robots with capabilities to
move with a mounted picking unit in and out of a IMM as
well as picking/releasing a molded object, and a conveyor belt
that transports the parts to another production cell.

A typical production situation of interest for our approach
occurs when the IMM completes the moulding procedure. The
Robot then moves in, grabs the object, moves out (signals
the IMM to continue) and turns to place the object on the
conveyor belt. The wiring and interoperability of the robots,
the machine, and the conveyor belt is critical. For example,
the robots need to receive a signal when the mold is ready to
move in and grab the molded part from the IMM. The Robot
also needs to know if the conveyor belt is in the right position
and empty to receive the part.

In such a scenario several reasons and occasions for re-
wiring exist:

« Initial Commissioning: a production cell is assembled for

the first time

« Product Variant-Induced Process Changes: For differently
formed products, the robot might need to use different
grippers. To keep the robot software independent from
the gripper, the gripper requires its own controller. With
every gripper change, the robot software has to connect
to another gripper controller, resulting in rewiring.

« Layout changes: Production processes rely in the capa-
bilities of multiple machines. Rewiring of part of the
machines is necessary when individual machines are
taken off-line for maintenance, replaced by newer ones,
or when resources such as collaborative or lightweight
robots are relocated for ghost shifts (i.e., the night or
weekend), respectively to match demand.

e Dynamic Product Routing: When flexible transport sys-
tems such as AGVs take care of routing a product from
one machine to the next, they will interact directly with
each machine to synchronize product handover. Thus, an
AGYV will be rewired to each machine it services, thus
has to be able to detect which synchronization protocol
(from many) the machine supports.'

Following the current traditional wiring methods, several

challenges are revealed, such as:

o Determining what are the required capabilities to com-
pletely integrate a shopfloor participant: When wiring
capabilities, there is no precise specification on a software
level about the required interoperable complementary ca-
pabilities on the other side of an interface. For example, a
loading capability would require an unloading capability
on the other machine. Thus, the conveyor belt loading
capability needs to be wired to the unloading capability
of the robotic arm.

« Missing or Incorrect Wiring: A missing connection (i.e.,
wire) between two participants might lead to production
halt, as a participant keeps waiting for a never dispatched

'The AGV will most likely cache previous wiring details but—when using
the rewiring approach—may react to machine updates (which may come with
new synchronization protocol versions).

signal. An incorrect wire might cause the same: the
signal is sent but doesn’t arrive. For example, a robot
is wrongly wired to another IMM, thus fails to move
into the IMM to pick out a molded part, subsequently
blocking further production. Incorrect wires might also
cause broken equipment or products if a syntactically
correct signal arrives to trigger an unexpected action.
For example, in our cell, one robot places one part into
the IMM for add-on moulding whereas the second robot
retrieves the part after the moulding completes. If the
free-signal intended for the first robot is also delivered to
the second robot, the two robots will potentially collide
when moving simultaneously into the IMM.

« Insufficient information hiding: vendors expose informa-
tion/signals at various levels of the machine’s subsystems,
requiring expert knowledge which ones are relevant for
wiring. Only a few standards exist (e.g., EUROMAP 77
based on OPC UA) that provide semantic models for
intercommunication of the capabilities between machines
and also these standards lack details how the wiring
should be established.

I1I. APPROACH

Our approach to flexible and lightweight wiring of cyber-
physical production systems builds on the general idea to
expose design, respectively, architectural information at run-
time. Making design-time information available at runtime is
not novel by itself, but hasn’t been realized in a lightweight
manner, for wiring up systems dynamically, in the context
of industrial environments making use of OPC UA (see our
discussion on related work in Section VII).

The key concepts that achieve light-weightness are:

- Independence from a heavyweight modeling language as
we provide a simple meta model just for describing capa-
bilities (see Subsection IV-A) without having to describe the
participating systems in full detail in a language such as
UML/SysML.

- Exposing information on required and provided capabilities
at arbitrary locations in the OPC UA nodeset, conceptually
similar to using microformats to provide meta data on HTML
elements.

- A minimal interface to supply shopfloor participants with
(updated) wiring information.

Figure 1 displays the distinction between design-
time/deploy-time (i.e., designing the shopfloor participants and
starting them on site but without becoming operational, steps a
to d) and run-time/commissioning time (i.e., integrating/wiring
individual participants to become operational as well as pro-
duction time, steps 1 to 6).

Individual vendors (through market power) or standard-
ization bodies define a set of capabilities (e.g., the set of
EUROMAP? standards for the plastics and rubber machinery
industry). At design-time engineers at the individual vendors
then implement that capability (a), and ensure that their system

https://www.euromap.org/
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Fig. 1. CPPS Architecture Wiring Approach. The figure displays the main building blocks and their relations using no particular modeling language.

(i.e., actor), when deployed, exposes the capability associated
parameters, methods etc. via OPC UA (b). The actor then
additionally signals the ability to provide the capability via
a reference (c). Other actors signal the requirement to use a
particular capability (d) in the same manner. Steps (b) to (d)
take effect upon deployment of an actor at the shopfloor but
before wiring/commissioning.

At runtime a discovery client (be it as part of an engineer’s
setup tool or as part of a shopfloor’s autoconfiguration mech-
anism) browses the shopfloor’'s OPC UA servers merely for
capabilities and wiring endpoints (1). The External Wiring
Client engages with an actor’s Wiring Endpoint merely to
inform it about the location (i.e., server and actor node id)
of the required capability’s remote counter part (2). The
actor’s Internal Wiring Client thus knows where at the remote
OPC UA server to locate the capability’s defined methods,
parameters etc. (3). It then sets the wiring details (4) and
informs the actor’s subsystem logic (5) how to connect via
OPC UA (6) to the required functionality. Figure 1 doesn’t
show the interactions for setting the wiring details on the
providing actor (i.e., Subsystem 2-1) for sake of clarity.

We outline the detailed discovery and wiring procedure
below. Note that the methods, techniques, algorithms, or
models for establishing which required capability should be
wired exactly to which provided capability (i.e., instance) is
outside the scope of this paper as this is a very domain and
context-dependent aspect.

IV. ELEMENTS FOR WIRING CPPS
A. Capabilities and Actors

Our approach is based on a core meta-model developed in
multiple applied research projects in Pro® Future. The two
central, and tightly linked concepts in this meta-model are
Capabilities and Actors. Capabilities most closely resembles
interface descriptions in traditional architecture description

languages such as xADL [4] Actors are systems which provide
or require capabilities (see Capability Instances below) for
their production tasks—conceptually similar to components in
software architecture, which specify via ports which interfaces
(i.e., capabilities) they realize/implement, and which ones they
require. The wiring in our approach then describes, only at
runtime, which ports become connected.

In CPPS, capabilities range from representing simple activ-
ities such as moving a robotic arm, to complex activities such
as executing a full production cycle in an IMM. Similar to
interfaces, a capability describes what to do (with what input
and expected output), but not how to achieve the represented
activity, thus hiding actor internal realization details.

Capabilities are not necessarily limited to representing phys-
ical activities. A capability may also represent purely software-
centric activities (i.e. services) such as planning an optimal
route between (wo machines, sending an alert to a foreman,
or updating production statistics in an ERP system.

Capabilities may define input parameters to configure the
desired result—from simple values like the position of a
robotic gripper, up to an xml-encoded set of configuration
parameters—and output parameters describing the result. In
our approach, atomic capabilities include OPC UA method
calls, OPC UA readable and writable parameters, OPC UA
events, and OPC UA programs. Depending on such a binding,
other actors make use of a capability by sending an event using
a publish subscribe protocol, invoking a method, or writing to
a parameter. Currently efforts to standardise the interfaces and
modeled information are undertaken, however these standards
don’t specify the wiring procedure.

We foresee that capabilities are published similar to XML
schema documents, thus identifyable via an URI. The next
subsections outline how actors make use of capability defini-
tions and how they expose capability instances via OPC UA.
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Fig. 2. Pseudo OPC UA node set hierarchy
showing capabilities

B. Capability Instances

Actors may provide or require the same capability multiple
times. A turntable (actor) as part of a flexible transport system
may receive and distribute pallets from four sides, with ma-
chines, robots, or other transport systems placed at these four
side. The turntable needs to synchronize un/loading actions
with each neighboring actor separately to ensure a successful
handover of a pallet. Such synchronization is typically defined
as a capability to ensure that actors from different vendors
can seamlessly interact using an interoperable interface. The
capability then may consist of a state machine describing
the synchronization protocol between the two neighboring
actors, the methods to trigger transitions in the protocol state
machine, and events to monitor the current protocol state. A
turntable actor would then provide a separate synchronization
capability for each side. A single neighboring actor then
only needs to monitor/interact with its assigned (i.e., wired)
capability without any further knowledge needed how many
other capabilities (i.e., pallet un/loading sides) the turntable
actor exposes or what state their synchronization protocols
are in. Internally the turntable actor may want to distinguish
among its synchronisation capabilities by roles with labels
such as “NORTH”, “WEST”, “SOUTH”, and “SOUTH”.

C. Exposing required and provided capabilities

In order for actors to become wired up to other actors,
they need to expose what capabilities they provide and which
they require. To this end, we use the OPC UA node set’s
hierarchical structure to represent a shopfloor participant’s
actor hierarchy (see Figure 2). Specifically, an OPC UA
server may contain at any hierarchy level a Capabilities folder
node. We then consider the parent node of this folder an
implicit actor, the parent node’s id becoming the actor’s id.
Further Capabilities folder nodes further down in the hierarchy
represent child actors. A Capabilities folder lists all Capability
references that this actors provides or requires. A Capability
node consists of following properties:

¢ Id: (required) host-wide unique identifier of this capabil-

ity instance.

Fig. 3. Wiring example (Pseudo OPC UA node set)

o Type: (required) URI referencing the capability defini-
tions (similar how XML identifies schema documents).

« Provided: (required) flag for specifying whether the ca-
pability is provided (true) or required (false).

« Role: (optional) actor-centric specific role identifier that
may be non-unique across the server, useful when more
than one capability instance of the same type is re-
quired/provided (see above).

« ImplementedBy: (optional) list of references to OPC UA
nodes to identify—in the case of multiple provided capa-
bilities of the same type—which parameters and methods
(having the same OPC UA browse name) belong to a
particular capability instance.

Adding such design information doesn’t interfere with a
system’s OPC UA node set as the exposed information is
purely additional, merely identifying and marking up those
parts in an OPC UA node set hierarchy that are relevant
for wiring. Once the wiring is complete, one could even
remove all these OPC UA nodes without affecting the systems
functionality (at the cost of not being able to dynamically
discover and rewire capabilities any longer).

This meta-model and grounding in OPC UA serves as a
foundation for the wiring procedure outlined next.

V. RUNTIME CPPS ARCHITECTURE WIRING
A. Decentralized Architecture Recovery/Discovery

An engineer responsible for setting up or rewiring systems
on the shopfloor applies an Architecture Discovery Client
which browses the OPC UA servers on the shopfloor (Figure 1
(1)).3 The list of servers to browse is available via cached
information, an out-of-band mechanism, or by contacting a
local discovery server (LDS); all these mechanisms are outside
the scope of this paper. Instead of exhaustively (and slowly)
browsing top-down through the complete OPC UA node set,
the Architecture Discovery Client may simply search for nodes
with the Capabilities browse name and retrieve all child nodes.

We developed a prototype architecture discovery client described in
Section VI
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This results in a flat list with entries of type Capability.
For each capability, the client then navigates towards the
root to establish for the underlying machine the capabilities’,
respectively actors’, hierarchical structure. The primary output
for each machine is thus a tree of actors, each requiring and/or
providing a set of capabilities (each a leaf node in the tree).

For shop floor software architecture recovery, the Archi-
tecture Discovery Client additionally inspects the discovered
Capability nodes for Wiring nodes and establishes the op-
posite end of a wiring by extracting the Remote Endpoint
and Remote Nodeld properties. The client then augments
the actor/capability tree with the extracted wirings between
the capability nodes (see Figure 3). Hence the engineer can
inspect which actors on the shop floor are already set up to
communicate with each other, and which required capabilities
still need wiring up.

Note that the Internal Wiring Client is also described by its
respective capability definition (not shown in Figure 1 for sake
for clarity but displayed in Figure 2 for the wiring capability).
Hence the Architecture Discovery Client also detects the
ability of an actor to be dynamically wired up.

B. Executing Wiring Information

Each actor that intends to support dynamic wiring needs to
expose a Wiring Endpoint identified by the Wiring capability
(see for example Figure 2). The Wiring capability defines
a single method to provide the wiring details. The Internal
Wiring Client behind the wiring endpoint is responsible for
all required and provided capabilities of its actor, in Figure 3,
for example, responsible for SyncNorth and SyncSouth capa-
bilities.

When calling the wiring endpoint (2), the External Wiring
Client provides following wiring information (based on the
example in Figure 3):

e Local Capability Id: (required) which capability out of

many is wired, e.g., “South_Client”.

« Remote Capability Id: (required) which remote capability

requires or provides the counterpart to the local capability,
e.g., “SyncServerl”.

« Remote Endpoint: (required) host at which the OPC UA

capability node is exposed, e.g., “opc.tcp://x.y.z.2:4840/”.

« Remote Nodeld: (required) node id that identifies the

remote capability’s root node, e.g., “ns=1;s=Capability1”.

« Remote Role: (optional) informational field to avoid

having to browse the remote endpoint for retrieving
additional wiring information, e.g., “Default”.

Actors that only provide capabilities but don’t require any
themselves may choose to drop the Wiring Endpoint and thus
won’t expose any wiring information. Note that such actors
still need to expose capability information in order to be
discoverable. In this case, the shopfloor is recoverable from
extracting the wiring information from actors that require and
are wired to these capabilities.

Next, the Internal Wiring Client browses the identified
remote capability to retrieve the references from the Imple-
mentedBy property to obtain for each method, event, parameter

of the capability its respective node id. If this is successful, it
exposes the wiring information (4) in the capability’s Wirings
list as one Wiring entry (see Figure 3). The client may also
decide to persist the wiring information on the local file
system or another mechanism such as an external service
to enable recovering the wiring information upon a system
restart. The persistence mechanism is out of scope of this
paper. The Internal Wiring Client then provides this list to
the Subsystem Logic (5).* The client needs to be capability-
aware as it has to know exactly which methods, parameters,
events the subsystem logic requires and how the subsystem
logic will make use of these. Ultimately, the subsystem logic
accesses the required capabilities via an OPC UA Client.

In case of sending wiring information to the actor providing
the capability (not shown in Figure 1), the Internal Wiring
Client may merely expose the wiring information in the pro-
vided capability’s Wirings list. It then informs the subsystem
logic of the remote actor that will potentially make use of
the locally provided capability. Whether the subsystem logic
then prepares for such a usage (e.g., making system resource
available, updating access rules, etc.) depends on the capability
purpose and implementation.

C. Addressing the Challenges

Together, these elements enable to address the challenges
outlined in Section IV:

« Determining the required capabilities to completely inte-
grate a shopfloor participant is supported by inspecting
the required capabilities.

e Missing and Incorrect Wiring are quickly found by iden-
tifying empty wiring information, respectively mismatch-
ing capability identifiers. Additionally the Architecture
Discovery Client rejects wiring of incompatible capabil-
ities, and then again the Internal Wiring Client ensures
all required methods and field are indeed provided.

o Information hiding is achieved by limiting the need
to inspect the OPC UA node set to those node areas
identified by a capability.

VI. USE CASE-BASED EVALUATION

We demonstrate the feasibility of our approach by outlining
how we realized the various wiring components in the scope
of a lab-scale production cell model depicted in Figure 4.

A. Use case I - lab-scale production cell model

Our lab-scale production cell model aims at illustrating
the concepts that enable flexible production and the need for
software to achieve this. Our cell model has the capability to
customize the drawings on a piece of paper at multiple plotting
stations. The production plant consists of following machine
types: input stations that provide pallets with paper, plotters
that load the pallets and draw images, turntables that transport

“Depending on implementation and integration of the Internal Wiring
Client, it may hand over an OPC UA client instance to the subsystem for
immediate use (tighter integration) or merely write the now confirmed node ids
to wellknown variables accessible by the subsystem logic (loose integration).
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Fig. 4. The Factory in a Box, a lab-scale production cell

the pallets between plotters, and finally, output stations where
the finished product (i.e., paper) is retrieved. We use Lego
Mindstorm EV3-based PLCs as basis as this allows for rapid
and cheap machine prototyping without the need to test indi-
vidual subcomponents such as motors, actuators, and sensors.
Also it ensures their seamless integration. Communication
between the machines is purely based on OPC UA. Plotters
and input/output stations are designed and programmed with
the IEC 61499 industry standard using the open source IDE
Eclipse 4diac and the respective FORTE runtime environment
integrating the Open62541 OPC UA server. The turntables
are implemented in Java, using the Eclipse Milo OPC UA
framework. Hence, despite the toy character of the setup, the
used software and communication infrastructure is industrial
grade.

A turntable provides the central transport infrastructure.
Each offers four sides for attaching machines, input/output
stations, or other turntables. Hence, for our setup of two
turntables placed side-by-side, we are able to dynamically
connect six machines: input/output stations and plotters.

This model cell exhibits the same reasons for rewiring as
outlined in the motivating scenario: At initial commission-
ing all these machine need a first wiring to know who to
communicate with to synchronize the exchange of pallets.
Product Variant-induced Changes: a plotter’s print head may
be replaced by a stamping head. Layout changes: whenever
the layout changes, e.g., to replace a printer, it needs to
be wired to a turntable. Dynamic Product Routing: adding
another turntable requires the transport system to know exactly
which turntable is wired to what other turntable via which
synchronization capability instance.

To demonstrate dynamic rewiring, each input/output station
and plotter exposes via OPC UA their single synchronization
capability (see “SyncServer” capability in Figure 3 left).
Turntables expose four such synchronization capabilities with
roles “North”, “South”, “East”, and “West”. In our demonstra-
tor only the turntables provide a Wiring capability (i.e., expose
a Wiring endpoint) to demonstrate the ability of our approach
to handle scenarios where only partial wiring information is

available.

The same wiring challenges as outlined in the motivating
scenario exist: A missing wiring between a turntable and
plotter halts production as the two machines cannot coordinate
the pallet handover. An incorrect wiring would result, e.g., in
synchronizing with the wrong plotter that would then poten-
tially unload the pallet towards an plotter that is oriented to
another machine. An engineer wiring up plotters and turntable
has all complexity of the turntable, conveyor, and plotting
subsystems hidden from them and needs only to focus on the
synchronization capability related OPC UA parameters.

In out case, a dedicated visual editor provides even more
support. With our editor (shown in Figure 5 we discover the
shopfloor participants and their capabilities® (and any existing
wirings) and subsequently allow the engineer to control how
the capabilities need to be wired up without needing detailed
expertise of the participants’ OPC UA node set hierarchy.
While the matching of required to provided capabilities occurs
in the editor, the availability of all methods and variables part
of the synchronization capability are done by the turntable,
which thus are agnostic whether they synchronize with a
plotter, an output station, or another turntable, each one having
the synchronization capability at a different location in their
OPC UA node set.

B. Discussion

The application of our approach the lab scale production
cell using different OPC UA stacks demonstrates the general
feasibility of our approach for dynamically wiring CPPS at
the software architecture level.

We identified the OPC UA server as a suitable location on
the shopfloor for exposing capability information as close to
the implementing actor as possible. We note that the basic,
out-of-the-box OPC UA mechanism for exposing an actor’s in-
formation and means of communication limits dynamic wiring
scenarios, as an OPC UA server by itself only describes the
provided capabilities, but has no built-in dedicated mechanism

SBeing work in progress, the editor cannot display the actor hierarchy yet.
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Fig. 5. Architecture Discovery Client prototype for inspecting and reconfigur-
ing wiring between systems: here an excerpt from the lab scale cell consisting
of a turntable’s synchonization subsystems in the middle (require capabilities
displayed in red), and two plotters, input station, and output stations, all of
them providing synchronization capabilities (depicted in green).

for signalling required capabilities. This paper provides an
approach to overcome this limitation.

The use case also shows that by modeling explicit archi-
tectural information, a significant amount of details (and thus
complexity) on the OPC UA servers can remain hidden. By
accessing only the capability definitions, any client (e.g., the
Architecture Discovery Client) does not need to understand the
irrelevant parts of the OPC UA node set. For wiring up the
input station, output station, turntables, and plotters, one does
not need to know where to search a plotter for the transport
synchronization methods and state variable.

The use cases also showed that discovery and wiring is
feasible in a decentralized, dynamic manner. Instead of having
to register all required and provided capabilities at a central
entity (e.g., as the Arrowhead framework supports for service-
oriented composition), participants just expose such informa-
tion locally and apply a dedicated wiring mechanism with
dedicated wiring logic (e.g., an expert) to connect the various
shopfloor participants. Additionally, architecture recovery is
possible without having to centrally aggregate and maintain a
view of the whole shopfloor. Recovery may focus on a partic-
ular machine or shopfloor segment initially, then incrementally
extend to the needs of the particular task at hand, especially
if an engineer’s tacit knowledge is required for deciding on
wiring changes, e.g., understanding which plotting machine
needs to be connected to which turntable when switching
around plotters.

VII. RELATED WORK

Software architecture research is an active topic in the cyber
physical (production) systems community.

Alternatives to the automation pyramid are investigated.
Thramboulidis et al. [6] investigate the usage of CPS as

microservices. Pisching et al. [7] propose to use service-
oriented architectures for CPPS and define a layout for
CPS to behave as services. Others like Kastner and Ismail
[8], Hussnain, Ferrer and Lastra [9], or Spinelli et al. [10]
develop architectures, based on patterns studied well already
in software architectures. Their intent is to improve the
interoperability between components, but the prevalence of
“vertical integration” mirrors the hierarchical concept of the
“automation pyramid”.

None of the works above considers
reconfiguration of software interfaces.

frequent runtime

Oreizy, Medvidovic and Taylor [11] gathered an extensive
survey on existing solutions and styles for flexible software.
Patterns for delegate multi-agent systems [12] allow great
reconfigurability at the level of replacing and rewiring compo-
nents but haven’t been evaluated in an manufacturing context
yet.

Many agent-based works focus on reconfiguration. Many ar-
chitectures are proposed and demonstrated based on platforms
that do not consider ongoing standardisation efforts: Batista
et al. [13] use OpenCOM, Rodrigues et al. [14] work directly
at TCP/IP layer, Vogel-Heuser et al. [15] demonstrate their
architecture via VPN channels and Web Sockets. Safi et al.
[16], as well as Cornejo et al. [17] use Java environments.

A second group of multi-agent works focuses on code gen-
eration for machines, like Brennan et al. [18], or Lepuschitz
et al. [19], whereas our approach only specifies the interface,
and is unaffected by the choice of programming language.
Dias et al. base their framework on OPC UA and use Au-
tomationML to model the node set. The approach only takes
into account communication via data fields and omits the
use of methods and events. Authors, like Malek, Mikic-Rakic
and Medvidovic [20], or Hallsteinsen et al. [21], describe
independent solutions, all based on platform-specific “con-
nectors” or “bindings” and platform-independent coordination
middleware. Connectors being platform-specific limits the
interoperability of the involved machinery.

Prehofer and Zoitl [22] extend this concept of platform-
specific access layer (a.k.a. “thin controller”) with the ca-
pability to receive control code at runtime. Their approach
is optimised to only transfer a few next instructions, making
a central coordinator necessary. Atmojo et al. [23] solve the
challenge of reconfiguration by replacing application logic on
the server. The authors themselves state, that real-time require-
ments are subject to future work. Dassisti et al. [24] propose
an architecture for application logic and communication that
allows to dynamical regrouping of systems. They do not build
on standards like OPC UA.

Above works tackle the reconfiguration aspect of distributed
systems, but we find them either limited in their completeness
or their applicability to a real production environment.

OPC UA and UML/SysML have been investigated for model-
based approaches. Lee et al. [25] show the compatibility of
OPC UA und UML by providing a QVT transformation, but
do not mention any application to OPC UA server imple-
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mentation. Pauker et al. [26] use UML to describe servers’
capabilities. They generate code for OPC UA node sets at
compile time. They do not consider dynamic reconfiguration.
Brecher et al. [27] start from a SysML description of a
production cell layout and behavior model to generate code
for programmable logic controllers. They neither consider the
aspect of dynamic reconfiguration.

We conclude, that the different groups of works presented in
this section are not able to provide online reconfiguration of
distributed communication between production machinery, as
they either focus on the centralised, hierarchical production
pyramid, are (in their current development state) not applicable
to a manufacturing environment, or do not consider reconfig-
uration during runtime.

VIII. CONCLUSIONS

In this paper, we introduced a lightweight approach for dy-
namically wiring software architectures for cyber-physical pro-
duction systems. The key concept of Actors exposing provided
and required Capabilities via OPC-UA allows to decentrally
recover/discover how shopfloor actors already communicate
with each other, respectively how they can be correctly wired
up. We demonstrated the feasibility of our approach on a lab-
scale production cell model.

Future work will address how the distributed wiring in-
formation may be applied to distributed monitoring of the
shopfloor in order to detect wiring inconsistencies or potential
bottlenecks (e.g., when too many client require the capability
of a single actor). We will also investigate the integration of
UML/SysML based interface descriptions as an alternative to
our capabilities meta model.
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